Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 148
Filter
1.
Biomater Res ; 27(1): 133, 2023 Dec 15.
Article in English | MEDLINE | ID: mdl-38102651

ABSTRACT

BACKGROUND: Drug nanocarriers can markedly reduce the toxicities and side effects of encapsulated chemotherapeutic drugs in the clinic. However, these drug nanocarriers have little effect on eradicating breast cancer stem cells (BCSCs). Although compounds that can inhibit BCSCs have been reported, these compounds are difficult to use as carriers for the widespread delivery of conventional chemotherapeutic drugs. METHODS: Herein, we synthesize a polymeric nanocarrier, hyaluronic acid-block-poly (curcumin-dithiodipropionic acid) (HA-b-PCDA), and explore the use of HA-b-PCDA to simultaneously deliver chemotherapeutic drugs and eradicate BCSCs. RESULTS: Based on molecular docking and molecular dynamics studies, HA-b-PCDA delivers 35 clinical chemotherapeutic drugs. To further verify the drug deliver ability of HA-b-PCDA, doxorubicin, paclitaxel, docetaxel, gemcitabine and camptothecin are employed as model drugs to prepare nanoparticles. These drug-loaded HA-b-PCDA nanoparticles significantly inhibit the proliferation and stemness of BCSC-enriched 4T1 mammospheres. Moreover, doxorubicin-loaded HA-b-PCDA nanoparticles efficiently inhibit tumor growth and eradicate approximately 95% of BCSCs fraction in vivo. Finally, HA-b-PCDA eradicates BCSCs by activating Hippo and inhibiting the JAK2/STAT3 pathway. CONCLUSION: HA-b-PCDA is a polymeric nanocarrier that eradicates BCSCs and potentially delivers numerous clinical chemotherapeutic drugs.

2.
Chem Soc Rev ; 52(20): 6938-6956, 2023 Oct 16.
Article in English | MEDLINE | ID: mdl-37791542

ABSTRACT

Photocatalytic ammonia synthesis (PAS) is an emerging zero carbon emission technology, which is critical for mitigating energy crises and achieving carbon neutrality. Herein, we summarize the recent advances and challenges in PAS from an engineering perspective based on its whole chain process, i.e., materials engineering, structure engineering and reaction engineering. For materials engineering, we discuss the commonly used photocatalytic materials including metal oxides, bismuth oxyhalides and graphitic carbon nitride and emerging materials, such as organic frameworks, along with the analysis of their characteristics and regulation methods to enhance the PAS performance. For structure engineering, the design of photocatalysts is described in terms of morphology, vacancy and band, corresponding to the crystal, atom and electron scales, respectively. Moreover, the structure-performance relationship of photocatalysts has been deeply explored in this section. For reaction engineering, we identify three key processes from the chemical reaction and mass transfer, i.e., nitrogen activation, molecule transfer and electron transfer, to intensify and optimize the PAS reaction. Hopefully, this review will provide a novel paradigm for the design and preparation of high-efficiency ammonia synthesis photocatalysts and inspire the practical application of PAS.

4.
J Agric Food Chem ; 71(14): 5655-5666, 2023 Apr 12.
Article in English | MEDLINE | ID: mdl-36995760

ABSTRACT

Methionine restriction (MR) improves glucose metabolism. In skeletal muscle, H19 is a key regulator of insulin sensitivity and glucose metabolism. Therefore, this study aims to reveal the underlying mechanism of H19 upon MR on glucose metabolism in skeletal muscle. Middle-aged mice were fed MR diet for 25 weeks. Mouse islets ß cell line ß-TC6 cells and mouse myoblast cell line C2C12 cells were used to establish the apoptosis or insulin resistance model. Our findings showed that MR increased B-cell lymphoma-2 (Bcl-2) expression, deceased Bcl-2 associated X protein (Bax), cleaved cysteinyl aspartate-specific proteinase-3 (Caspase-3) expression in pancreas, and promoted insulin secretion of ß-TC6 cells. Meanwhile, MR increased H19 expression, insulin Receptor Substrate-1/insulin Receptor Substrate-2 (IRS-1/IRS-2) value, protein Kinase B (Akt) phosphorylation, glycogen synthase kinase-3ß (GSK3ß) phosphorylation, and hexokinase 2 (HK2) expression in gastrocnemius muscle and promoted glucose uptake in C2C12 cells. But these results were reversed after H19 knockdown in C2C12 cells. In conclusion, MR alleviates pancreatic apoptosis and promotes insulin secretion. And MR enhances gastrocnemius muscle insulin-dependent glucose uptake and utilization via the H19/IRS-1/Akt pathway, thereby ameliorating blood glucose disorders and insulin resistance in high-fat-diet (HFD) middle-aged mice.


Subject(s)
Insulin Resistance , Proto-Oncogene Proteins c-akt , Mice , Animals , Proto-Oncogene Proteins c-akt/metabolism , Insulin Resistance/physiology , Methionine/metabolism , Insulin Receptor Substrate Proteins/metabolism , Insulin Secretion , Muscle, Skeletal/metabolism , Glucose/metabolism , Racemethionine/metabolism , Proto-Oncogene Proteins c-bcl-2/metabolism
5.
ACS Appl Mater Interfaces ; 15(1): 1053-1062, 2023 Jan 11.
Article in English | MEDLINE | ID: mdl-36538610

ABSTRACT

Enhancing the photogenerated electrons transfer efficiency is crucial for photocatalytic reactions. Herein, a dual-ligand-induced push-pull effect was manipulated to intensify the transfer of photogenerated electrons between organic ligands and metal clusters using NH2-MIL-125(Ti), a kind of Ti-based metal-organic framework (MOF), as the model system. The dual-ligand MOF, NH2/Cl-MIL-125, was designed and synthesized based on the Hammett constant (σm), in which -NH2 (σm = -0.16) and -Cl (σm = 0.37) were selected as the electron-pushing group and the electron-pulling group, respectively. Meanwhile, -CH3 (σm = -0.07, electron-pushing) and -H (σm = 0, neither electron-pushing nor electron-pulling) were selected as the reference groups to prepare NH2/CH3-MIL-125 and NH2/H-MIL-125, respectively, to validate the electron push-pull effect. NH2/Cl-MIL-125 (5.32 mmol g-1 h-1) exhibits a higher photocatalytic H2 evolution activity than single-ligand NH2-MIL-125 (1.93 mmol g-1 h-1), NH2/CH3-MIL-125 (4.45 mmol g-1 h-1), and NH2/H-MIL-125 (4.73 mmol g-1 h-1) under full-spectrum irradiation. The result can be attributed to the electron push-pull effect between -NH2 and -Cl, which boosts the electron transfer along the ligand-metal-ligand direction. Our dual-ligand-induced push-pull strategy for enhancing the electron transfer may offer some novel insights into the rational design and synthesis of photocatalysts for many other reactions.

6.
Compr Rev Food Sci Food Saf ; 22(1): 355-379, 2023 01.
Article in English | MEDLINE | ID: mdl-36382862

ABSTRACT

Protein and amino acid oxidation in food products produce many new compounds, of which the reactive and toxic compound dityrosine, derived from oxidized tyrosine, is the most widely studied. The high reactivity of dityrosine enables this compound to induce oxidative stress and disrupt thyroid hormone function, contributing to the pathological processes of several diseases, such as obesity, diabetes, cognitive dysfunction, aging, and age-related diseases. From the perspective of food safety and human health, protein-oxidation products in food are the main concern of consumers, health management departments, and the food industry. This review highlights the latest research on the formation pathways, toxicity, detection methods, occurrence in food, and mitigation strategies for dityrosine. Furthermore, the control of dityrosine in family cooking and food-processing industry has been discussed. Food-derived dityrosine primarily originates from high-protein foods, such as meat and dairy products. Considering its toxicity, combining rapid high sensitivity dityrosine detection techniques with feasible control methods could be an effective strategy to ensure food safety and maintain human health. However, the current dityrosine detection and mitigation strategies exhibit some inherent characteristics and limitations. Therefore, developing technologies for rapid and effective dityrosine detection and control at the industrial level is necessary.


Subject(s)
Proteins , Tyrosine , Humans , Tyrosine/chemistry , Tyrosine/metabolism , Oxidative Stress , Food
7.
Front Nutr ; 9: 1039753, 2022.
Article in English | MEDLINE | ID: mdl-36424928

ABSTRACT

Eugenol has been used in dietary interventions for metabolic diseases such as diabetes and obesity. However, the protective effect of eugenol on muscle function in diabetes is unclear. In this study, a high-fat diet (HFD) with a streptozocin (STZ) injection induced type II diabetes mellitus in a mouse model. Oral eugenol lowered blood glucose and insulin resistance of HFD/STZ-treated mice. Eugenol reduced HFD/STZ-induced muscle inflammation and prevented muscle weakness and atrophy. Eugenol administration significantly increased GLUT4 translocation and AMPK phosphorylation in skeletal muscle, thereby enhancing glucose uptake. By silencing the transient receptor potential vanilloid channel 1 (TRPV1) gene in C2C12 myotube cells, eugenol was found to increase intracellular Ca2+ levels through TRPV1, which then activated calmodulin-dependent protein kinase-2 (CaMKK2) and affected AMPK protein phosphorylation. In conclusion, eugenol is a potential nutraceutical for preventing high-glucose-induced muscle impairments, which could be explained by its mediating effects on glucose absorption and inflammatory responses in the muscle.

8.
Nutrients ; 14(21)2022 Oct 26.
Article in English | MEDLINE | ID: mdl-36364766

ABSTRACT

LncRNA H19 has been reported to regulate apoptosis and neurological diseases. Hippocampal neuron apoptosis damages cognitive ability. Methionine restriction (MR) can improve cognitive impairment. However, the effect of MR on hippocampal neuronal apoptosis induced by a high-fat diet (HFD) in middle-aged mice remains unclear. For 25 weeks, middle-aged mice (C57BL/6J) were given a control diet (CON, 0.86% methionine + 4.2% fat), a high-fat diet (HFD, 0.86% methionine + 24% fat), or an HFD + MR diet (HFMR, 0.17% methionine + 24% fat). The HT22 cells were used to establish the early apoptosis model induced by high glucose (HG). In vitro, the results showed that MR significantly improved cell viability, suppressed the generation of ROS, and rescued HT22 cell apoptosis in a gradient-dependent manner. In Vivo, MR inhibited the damage and apoptosis of hippocampal neurons caused by a high-fat diet, reduced hippocampal oxidative stress, improved hippocampal glucose metabolism, relieved insulin resistance, and enhanced cognitive ability. Furthermore, MR could inhibit the overexpression of H19 and caspase-3 induced by HFD, HG, or H2O2 in vivo and in vitro, and promoted let-7a, b, e expression. These results indicate that MR can protect neurons from HFD-, HG-, or H2O2-induced injury and apoptosis by inhibiting H19.


Subject(s)
Insulin , Methionine , Animals , Mice , Apoptosis , Cognition , Diet, High-Fat , Hippocampus/metabolism , Hydrogen Peroxide/metabolism , Insulin/metabolism , Methionine/metabolism , Mice, Inbred C57BL , Obesity/metabolism , Racemethionine/metabolism
9.
Food Funct ; 13(24): 12896-12914, 2022 Dec 13.
Article in English | MEDLINE | ID: mdl-36444912

ABSTRACT

Dietary methionine restriction (MR) has been shown to delay aging and ameliorate age-related cognitive impairments. We hypothesized that changes in the gut microbiota may mediate these effects. To test this hypothesis, ICR mice subcutaneously injected with 150 mg kg-1 day-1D-galactose were fed a normal (0.86% methionine) or an MR (0.17% methionine) diet for 2 months. Multiple behavioral experiments were performed, and the gut microbiota composition, metabolite profiles related to short-chain fatty acids (SCFAs) in the feces, and indicators related to the redox and inflammatory states in the hippocampus were further analyzed. Our results indicated that MR alleviated cognitive impairment (including non-spatial memory deficits, working memory deficits, and hippocampus-dependent spatial memory deficits) and anxiety-like behavior in D-Gal-induced aging mice. Furthermore, MR increased the abundance of putative SCFA-producing bacteria such as Lachnospiraceae, Turicibacter, Roseburia, Ruminococcaceae_UCG-014, Intestinimonas, Rikenellaceae, Tyzzerella, and H2S-producing bacteria such as Desulfovibrio in feces. Moreover, MR reversed and normalized the levels of intestinal SCFAs (acetate, propionate, and butyrate) and important intermediate metabolites of the SCFAs (pyruvate, lactate, malate, fumarate, and succinate), abolished aging-induced oxidative stress and inflammatory responses, increased the levels of H2S in the plasma and hippocampus, and selectively modulated the expression of multiple learning- and memory-related genes in the hippocampus. These findings suggest that MR improved the gut microbiota composition and SCFA production and alleviated oxidative stress and inflammatory responses in the hippocampus, which might prevent cognitive impairment in D-galactose-induced aging mice.


Subject(s)
Cognitive Dysfunction , Galactose , Mice , Animals , Galactose/adverse effects , Methionine , Mice, Inbred ICR , Fatty Acids, Volatile/metabolism , Aging/metabolism , Racemethionine , Spatial Memory , Memory Disorders
10.
Front Pharmacol ; 13: 920514, 2022.
Article in English | MEDLINE | ID: mdl-36003508

ABSTRACT

Background: Curcumin (CUR) displays the capability of suppressing the proliferation and metastasis of various cancer cells. However, the effects and underline mechanisms of CUR to treat triple-negative breast cancer (TNBC) have not been systematically elucidated with an appropriate method. Methods: In the present research, a combination method of network pharmacology, molecular docking, and in vitro bio-experiment was used to investigate the pharmacological actions and underline mechanisms of CUR against TNBC. First, common targets of CUR and TNBC were screened via Venny 2.1.0 after potential CUR-related targets and targets of TNBC were got from several public databases. Then, the Gene Ontology (GO) function and the Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway enrichment were performed on the Metascape website, and the network of compound-targets-pathways was constructed via Cytoscape software. Moreover, the network of protein-protein interaction was constructed by the STRING database to screen potential targets. Moreover, molecular docking was applied to affirm the interaction of CUR with the screened top 10 potential targets. Finally, in vitro experiments were used to further verify the effects and mechanisms of CUR and its nano-formulation (CUR-NPs) against TNBC. Results: Forty potential targets of CUR against TNBC were obtained. STAT3, AKT1, TNF, PTGS2, MMP9, EGFR, PPARG, NFE2L2, EP300, and GSK3B were identified as the top 10 targets of CUR against TNBC. In vitro experiment verified that CUR and CUR-NPs could not only restrain the invasion, migration, and proliferation of MDA-MB-231 cells but also induce their apoptosis. In addition, molecular docking demonstrated that CUR could bind spontaneously with the screened top 10 targeted proteins, and a real-time PCR experiment demonstrated that both CUR and CUR-NPs could downregulate the genetic expression levels of the 10 targets. Moreover, according to the CUR-targets-pathways network, PI3K-Akt, EGFR tyrosine kinase inhibitor resistance, JAK-STAT, Foxo, and HIF-1 signaling pathways were identified as the important pathways of CUR effects on TNBC. Among them, the inhibiting effects of CUR and CUR-NPs on the JAK-STAT signaling pathway were further verified by the western blot analysis. Conclusion: Taken together, the present research demonstrates that CUR and CUR-NPs have pharmacological effects against TNBC via a multi-target and multi-pathway manner.

11.
Front Biosci (Landmark Ed) ; 27(7): 220, 2022 07 13.
Article in English | MEDLINE | ID: mdl-35866403

ABSTRACT

BACKGROUND: The characterization of neuropathic pain is maladaptive plasticity within the nociceptive system. Multiple alterations contribute to complex pain phenotypes. Adrenomedullin (AM) has been documented to be a pain mediator. However, its involvement in pathological pain is poorly understood. We studied the contribution of AM to chronic neuropathic pain in the spinal nerve ligation (SNL) model. METHODS: Daily injection of the AM receptor antagonist AM22-52 (10 nmol) via an intrathecal (i.t.) route after SNL inhibited mechanical allodynia starting on day 6. Single administration of AM22-52 produced an immediate attenuation on pain hypersensitivity on day 2 or 10 post-SNL. Protein and mRNA levels were assayed by immunofluorescent staining and qRT-PCR, respectively, on days 1, 3, 7 and 15 post-SNL. RESULTS: The results showed that AM at both protein and mRNA levels was increased in both injured (L5) and adjacent uninjured (L4) nerves starting on day 3 post-SNL. In dorsal root ganglion (DRG) at L5, AM was increase on days 1-7 at mRNA level but only on day 7 at protein level. However, AM was increase at mRNA level on days 1-7 and at protein level on days 3-15 in L4 DRG. AM mRNA expression was upregulated on days 1-7 in the spinal cord. Expression of receptor activity-modifying protein 2 (RAMP2), an essential AM1 receptor component, was upregulated in small and medium-diameter neurons on days 1-15 in both L5 and L4 DRG. Furthermore, single administration of AM22-52 suppressed the increase of nNOS in DRG induced by SNL and daily injection of AM22-52 for 7 days inhibited SNL-induced increase of CGRP mRNA in the spinal dorsal horn. CONCLUSIONS: This study indicates that the increased AM bioactivity in injured and uninjured peripheral nerves, uninjured adjacent DRG and the spinal dorsal horn play a critical role mainly in the late-phase development of neuropathic pain. The mechanism may involve the recruitment of nNOS and CGRP.


Subject(s)
Adrenomedullin , Neuralgia , Adrenomedullin/genetics , Adrenomedullin/pharmacology , Animals , Calcitonin Gene-Related Peptide/metabolism , Neuralgia/drug therapy , Neuralgia/metabolism , RNA, Messenger/genetics , RNA, Messenger/metabolism , Rats , Rats, Sprague-Dawley
12.
Mol Nutr Food Res ; 66(1): e2100602, 2022 01.
Article in English | MEDLINE | ID: mdl-34786857

ABSTRACT

SCOPE: Recent studies have linked high consumption of red and processed meats to an increased risk of non-alcoholic fatty liver disease, and cooking-induced oxidation of proteins and amino acids might be contributing factors. Herein, this study investigates the influence of oxidized pork and the protein oxidation biomarker dityrosine (Dityr) on hepatic steatosis in mice. METHODS AND RESULTS: Low- and high-oxidative injury pork (LOP and HOP) are freeze-dried to prepare mouse diets. Mice are fed a diet of either the control, LOP, HOP, LOP+Dityr, or Dityr for 12 weeks. HOP and Dityr intake induced oxidative stress and inflammation that impaired thyroid function and peripheral metabolism (reduced type 1 deiodinase activity) of thyroid hormones (THs). These lead to a decrease in the circulating as well as liver THs and induced hepatic steatosis. This process might be regulated through reduced TH levels and altered TH target genes and proteins related to hepatic lipid metabolism that ultimately inhibited hepatic energy metabolism, as indicated by increased hepatic lipid synthesis, decreased hepatic lipid catabolism, and fatty acid oxidation. CONCLUSION: HOP intake could induce hepatic steatosis by impairing TH function. Dityr plays an important role in the HOP-induced harmful effects.


Subject(s)
Non-alcoholic Fatty Liver Disease , Pork Meat , Red Meat , Animals , Lipid Metabolism , Liver/metabolism , Mice , Mice, Inbred C57BL , Non-alcoholic Fatty Liver Disease/etiology , Non-alcoholic Fatty Liver Disease/metabolism , Swine , Thyroid Gland/metabolism , Thyroid Hormones
13.
Int J Nanomedicine ; 16: 1487-1508, 2021.
Article in English | MEDLINE | ID: mdl-33654398

ABSTRACT

Breast cancer stem cells (BCSCs), also known as breast cancer initiating cells, are reported to be responsible for the initiation, progression, therapeutic resistance, and relapse of breast cancer. Conventional therapeutic agents mainly kill the bulk of breast tumor cells and fail to eliminate BCSCs, even enhancing the fraction of BCSCs in breast tumors sometimes. Therefore, it is essential to develop specific and effective methods of eliminating BCSCs that will enhance the efficacy of killing breast tumor cells and thereby, increase the survival rates and quality of life of breast cancer patients. Despite the availability of an increasing number of anti-BCSC agents, their clinical translations are hindered by many issues, such as instability, low bioavailability, and off-target effects. Nanosized drug delivery systems (NDDSs) have the potential to overcome the drawbacks of anti-BCSC agents by providing site-specific delivery and enhancing of the stability and bioavailability of the delivered agents. In this review, we first briefly introduce the strategies and agents used against BCSCs and then highlight the mechanism of action and therapeutic efficacy of several state-of-the-art NDDSs that can be used to treat breast cancer by eliminating BCSCs.


Subject(s)
Breast Neoplasms/drug therapy , Breast Neoplasms/pathology , Drug Delivery Systems , Nanoparticles/chemistry , Neoplastic Stem Cells/pathology , Particle Size , Female , Humans , Signal Transduction
14.
Mol Nutr Food Res ; 65(6): e2000859, 2021 03.
Article in English | MEDLINE | ID: mdl-33502107

ABSTRACT

SCOPE: Consumption of red meat, particularly processed red meat, has been reported to be associated with type 2 diabetes risk, and oxidized proteins and amino acids may be involved in this process. This study explores the effects of pork with varying degrees of oxidative injury caused by cooking on glucose metabolism in mice. METHODS AND RESULTS: Cooked pork is freeze-dried to prepare animal feed. Mice are fed either a control diet (CON), a low- (LOP), or a high-oxidative injury pork diet (HOP) for 12 weeks. Intake of HOP causes hyperglycemia, hypoinsulinemia, and impaired glucose tolerance, indicating a glucose metabolism disorder. Accumulation of oxidation products increases oxidative stress and inflammatory response, which impairs pancreatic islet ß cells function and reduces insulin secretion. Moreover, HOP-mediated hyperglycemia can be partly attributed to elevated hepatic glucose output, as indicated by increased gluconeogenesis and glycogenolysis, and decreased glycolysis and glycogen content. Changes in these processes may be regulated by reduced insulin levels and suppression of the insulin receptor substrate-1 (IRS-1)/phosphoinositide 3-kinase (PI3K)/protein kinase B (Akt) signaling pathway and its downstream signaling molecules. CONCLUSION: HOP intake induces disorders of glucose metabolism by impairing pancreatic insulin secretion and increasing hepatic glucose output. Protein oxidation plays a key role in abnormal glucose metabolism induced by HOP.


Subject(s)
Glucose Metabolism Disorders/etiology , Glucose/metabolism , Pork Meat/adverse effects , Animals , Blood Glucose/metabolism , Body Weight , Cooking , Eating , Glucagon/blood , Glucose Tolerance Test , Hyperglycemia/etiology , Inflammation/etiology , Insulin/blood , Insulin Secretion , Insulin-Secreting Cells/pathology , Male , Mice, Inbred C57BL , Oxidation-Reduction , Oxidative Stress
15.
Brain Imaging Behav ; 15(1): 389-400, 2021 Feb.
Article in English | MEDLINE | ID: mdl-32125611

ABSTRACT

Sixty-four subacute stroke patients and 55 age-matched healthy controls (HCs) underwent a resting-state functional magnetic resonance imaging scan using an echo-planar imaging sequence and high-resolution sagittal T1-weighted images using a three-dimensional magnetization-prepared rapid gradient echo sequence. Static and dynamic voxel-mirrored homotopic connectivity (VMHC) was computed, respectively. The relationships between the clinical measures, including National Institutes of Health Stroke Scale (NIHSS), illness duration, Fugl-Meyer assessment for upper and lower extremities (FMA-total) and size of lesion volume, and the static/ dynamic VMHC variability alterations in stroke patients were calculated. The stroke patients showed significantly increased static VMHC in the corpus callosum, middle occipital gyrus and inferior parietal gyrus, and decreased static VMHC in the inferior temporal gyrus and precentral gyrus (PreCG) compared with those of HCs. For dynamic VMHC variability, increased dynamic VMHC variability in the inferior temporal gyrus and PreCG was detected in stroke patients relative to that in HCs. Correlation analysis exhibited that significant negative correlations were shown between the FMA scores and dynamic VMHC variability in PreCG. The present study suggests that combined static and dynamic VMHC could be helpful to evaluate the motor function of stroke patients and understand the intrinsic differences of inter-hemispheric coordination after stroke.


Subject(s)
Magnetic Resonance Imaging , Stroke , Case-Control Studies , Corpus Callosum , Humans , Parietal Lobe , Stroke/diagnostic imaging
16.
Neurology ; 95(17): e2318-e2330, 2020 10 27.
Article in English | MEDLINE | ID: mdl-32999058

ABSTRACT

OBJECTIVE: To determine the effects of a 12-week home-based motor training telerehabilitation program in patients with subcortical stroke by combining motor function assessments and multimodality MRI analysis methods. METHODS: Fifty-two patients with stroke and hemiplegia were randomly assigned to either a home-based motor training telerehabilitation (TR) group or a conventional rehabilitation (CR) group for 12 weeks. The Fugl-Meyer assessment (FMA) for upper and lower extremities and the modified Barthel Index were used as primary outcomes. The secondary outcomes included resting-state functional connectivity (rsFC) between the bilateral M1 areas, gray matter volumes of the primary motor cortex (M1) areas, and white matter integrity of the corticospinal tract. Analysis of covariance was applied to examine the effects of the home-based motor training TR program on neural function recovery and brain plasticity. RESULTS: Compared with the CR group, the TR group showed significant improvement in the FMA (p = 0.011) and significantly increased M1-M1 rsFC (p = 0.031) at the end of the rehabilitation. The M1-M1 rsFC change was significantly positively correlated with the FMA change in the TR group (p = 0.018). CONCLUSION: This study showed a beneficial effect of the home-based motor training telerehabilitation program on motor function in patients with stroke, which was accompanied by enhanced interhemispheric functional connectivity of the M1 areas. We inferred that it is feasible, safe, and efficacious for patients with stroke to receive professional rehabilitation training at home. The combined use of imaging biomarkers should be encouraged in motor training clinical studies in patients with stroke. CLASSIFICATION OF EVIDENCE: This study provides Class II evidence that for patients with stroke with hemiplegia, home-based telerehabilitation compared to conventional rehabilitation significantly improves some motor function tests.


Subject(s)
Stroke Rehabilitation/methods , Stroke/diagnostic imaging , Telerehabilitation/methods , Adult , Aged , Aged, 80 and over , Diffusion Tensor Imaging , Disability Evaluation , Female , Gray Matter/diagnostic imaging , Gray Matter/physiopathology , Home Care Services , Humans , Magnetic Resonance Imaging , Male , Middle Aged , Motor Cortex/diagnostic imaging , Motor Cortex/physiopathology , Neural Pathways , Neuronal Plasticity , Paresis/etiology , Paresis/rehabilitation , Pyramidal Tracts/diagnostic imaging , Pyramidal Tracts/physiopathology , Recovery of Function , Stroke/complications , Stroke Rehabilitation/instrumentation , Treatment Outcome
17.
Eur J Med Chem ; 202: 112509, 2020 Sep 15.
Article in English | MEDLINE | ID: mdl-32668379

ABSTRACT

Thirty novel 20 (S)-O-linked camptothecin (CPT) glycoconjugates were synthesized. They showed more potent in vitro cytotoxicities over irinotecan, but very weak direct topoisomerase I (Topo I) inhibition was observed at 100.0 µM. Oligosaccharide types, length of a PEG linker and acetyl groups exerted obvious effects on cytotoxicity, selectivity, water solubility and stability of the newly synthesized CPT glycoconjugates. Construct 40, with a bleomycin (BLM) disaccharide linked to diethylene glycol in the introduced ester moiety, demonstrated a superior antitumor activity and a distinct selectivity compared to CPT. No toxicity was detectable in animal acute toxicity intravenously (160 mg/kg). Collectively, attachment of oligosaccharides with tumor targeting to 20 (S)-OH of CPT could offer a solution to the daunting problems posed by current Topo I poisons.


Subject(s)
Antineoplastic Agents/pharmacology , Camptothecin/pharmacology , Drug Design , Oligosaccharides/pharmacology , Topoisomerase I Inhibitors/pharmacology , Animals , Antineoplastic Agents/chemical synthesis , Antineoplastic Agents/chemistry , Camptothecin/chemistry , Cell Line , Cell Proliferation/drug effects , DNA Topoisomerases, Type I/metabolism , Dose-Response Relationship, Drug , Drug Screening Assays, Antitumor , Female , Humans , Mice , Mice, Inbred ICR , Molecular Structure , Oligosaccharides/chemistry , Solubility , Structure-Activity Relationship , Topoisomerase I Inhibitors/chemical synthesis , Topoisomerase I Inhibitors/chemistry
18.
Oxid Med Cell Longev ; 2020: 4604387, 2020.
Article in English | MEDLINE | ID: mdl-32685094

ABSTRACT

Sea cucumber promotes multifaceted health benefits. However, the mechanisms of sea cucumber peptides (Scp) regulating the antifatigue capacity is still unknown. The present study is aimed at further elucidating the effects and mechanisms of Scp on the antifatigue capacity of mice. At first, C57BL/6J mice were assigned into four groups named Con, L-Scp, M-Scp, and H-Scp and received diets containing Scp (0%, 0.15%, 0.3%, and 0.5%, respectively) for continuous 30 days. On the 21th day, a fore grip test was conducted on mice. On the 25th day, a rotating rod test was conducted on mice. On the 30th day, the quantities of glycogen and mitochondrial DNA (mtDNA) were determined in 8 random mice and another 8 mice were forced to swim for 1 hour before slaughter for detecting biochemical indicators. It was observed that the Scp groups significantly prolonged the running time in rotarod, increased forelimb grip strength, improved lactic acid (LD) and urea nitrogen (BUN) levels in the serum, decreased lactic dehydrogenase (LDH) and glutamic oxalacetic transaminase (GOT) activities in the serum, increased blood glucose (BG) and glycogen (GN) levels in the liver and skeletal muscle after swimming, increased the activity of Na+-K+-ATPase and Ca2+-Mg2+-ATPase in the skeletal muscle and heart, and improved antioxidant capacity. Furthermore, Scp treatment significantly elevated the mRNA and protein relative levels of power-sensitive factors, lipid catabolism, and mitochondrial biogenesis and significantly upregulated mRNA levels of gluconeogenesis. Besides, mtDNA before the swimming test was increased in the three Scp groups. These results show that Scp treatment has antifatigue capacity. Furthermore, these results suggest that improved energy regulation and antioxidant capacity may be the result of improved mitochondrial function.


Subject(s)
Adipocytes/metabolism , Mitochondria/metabolism , Peptides/metabolism , Animals , Gluconeogenesis , Male , Mice , Muscle Fatigue/drug effects , Physical Conditioning, Animal , Sea Cucumbers
19.
J Agric Food Chem ; 68(29): 7745-7756, 2020 Jul 22.
Article in English | MEDLINE | ID: mdl-32597175

ABSTRACT

Diet greatly influences gut microbiota. Dietary methionine restriction (MR) prevents and ameliorates age-related or high-fat-induced diseases and prolongs life span. This study aimed to reveal the impact of MR on gut microbiota in middle-aged mice with low-, medium-, high-fat diets. C57BL/6J mice were randomly divided into six groups with different MR and fat-content diets. Multiple indicators of intestinal function, fat accumulation, energy consumption, and inflammation were measured. 16S rRNA gene sequencing was used to analyze cecal microbiota. Our results indicated that MR considerably reduced the concentrations of lipopolysaccharide (LPS) and increased short-chain fatty acids (SCFAs) by upregulating the abundance of Corynebacterium and SCFA-producing bacteria Bacteroides, Faecalibaculum, and Roseburia and downregulating the LPS-producing or proinflammatory bacteria Desulfovibrio and Escherichia-Shigella. The effect of MR on LPS and SCFAs further reduced fat accumulation and systemic inflammation, enhanced heat production, and mediated the LPS/LBP/CD14/ TLR4 pathway to strength the intestinal mucosal immunity barrier in middle-aged mice.


Subject(s)
Aging/metabolism , Fats/metabolism , Gastrointestinal Microbiome , Methionine/metabolism , Animals , Bacteria/classification , Bacteria/genetics , Bacteria/isolation & purification , Bacteria/metabolism , Diet, High-Fat/adverse effects , Dietary Fats/adverse effects , Dietary Fats/metabolism , Energy Metabolism , Fatty Acids, Volatile/metabolism , Humans , Male , Methionine/analysis , Mice , Mice, Inbred C57BL
20.
Food Funct ; 11(2): 1764-1778, 2020 Feb 26.
Article in English | MEDLINE | ID: mdl-32044910

ABSTRACT

Dietary methionine restriction (MR) has been reported to extend lifespan, reduce obesity and decrease oxidative damage to mtDNA in the heart of rats, and increase endogenous hydrogen sulfide (H2S) production in the liver and blood. H2S has many potential benefits in the pathophysiology of the cardiovascular system. MR also increases the level of homocysteine (Hcy) in the liver and plasma, but elevated plasma Hcy is a risk factor for cardiovascular disease. Therefore, this study aimed to determine the effect of MR on cardiac function and metabolic status in obese middle-aged mice and its possible mechanisms. C57BL/6J mice (aged approximately 28 weeks) were divided into six dietary groups: CON (0.86% methionine + 4% fat), CMR40 (0.52% methionine + 4% fat), CMR80 (0.17% methionine + 4% fat), HFD (0.86% methionine + 24% fat), HMR40 (0.52% methionine + 24% fat) and HMR80 (0.17% methionine + 24% fat) for 15 consecutive weeks. Our results showed that 80% MR improves systolic dysfunction in middle-aged obese mice and enhances myocardial energy metabolism. 80% MR also reduces myocardial oxidative stress and improves inflammatory response. In addition, 80% MR increased mice Hcy levels and activated remethylation and transsulfur pathways of Hcy and promoted endogenous H2S production in the heart. 40% MR has the same trend, but is not significant. Moreover 40% MR at variance with 80% MR, did not decrease the body weight in both control and high-fat diet mice. These findings suggest that MR can improve myocardial energy metabolism, reduce heart inflammation and oxidative stress by increasing cardiac H2S production, and improve cardiac dysfunction in middle-aged obese mice.


Subject(s)
Diet , Methionine , Myocardium , Obesity/metabolism , Animals , Body Weight , Cardiomegaly/metabolism , Energy Metabolism/physiology , Homocysteine/metabolism , Hydrogen Sulfide/metabolism , Male , Methionine/administration & dosage , Methionine/metabolism , Methionine/pharmacology , Mice , Mice, Inbred C57BL , Mice, Obese , Myocardium/cytology , Myocardium/metabolism , Oxidative Stress/physiology
SELECTION OF CITATIONS
SEARCH DETAIL
...